Defining Project Complexity and Its Sources

Key Points

- Project complexity is the degree of interrelatedness between project attributes and interfaces and their consequential impact on predictability and functionality.
- When large complex projects come off the rails, they tend to go through a chaotic phase.
- Complexity can arise in engineering and construction programs from a broad range of factors.
- Management of project complexity is greatly aided by objective, tracking metrics and other actions.

Introduction

Complex projects are often described as being large and most large projects face increasing levels of complexity. Scale, however, is not the only determinant of complexity as there are many scientific and research projects much smaller in scale that are equally complex.

This Executive Insight focuses on:

- defining project complexity, providing an easy-to-understand visual analog.
- identifying potential sources of complexity in engineering and construction projects.
- providing a reference to one potential measure of project complexity.

The reader is also guided to the Executive Insight, Coupling in Large Complex Projects. 1

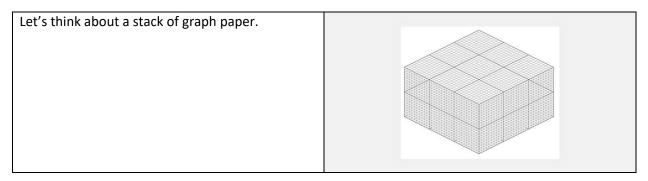
What is Complexity in Projects?

Complex projects can be defined as:

- a large number of interacting tasks.
- unanticipated emergent properties (see description of emergence).
- extensive coupling¹ (networked nature), which drives nonlinear behaviors.
- the ability to absorb most random disruptions.

¹ Executive Insight, Coupling in Large Complex Projects

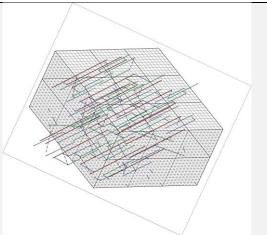
• vulnerable to catastrophic behavior under stress.


We are now in the "Century of Complexity," according to the late theoretical physicist, cosmologist, and author Stephen Hawking. Accordingly, we are transcending the domain of experts and are moving into a realm of "emergence," where the multi-finality of even well-developed programs must be acknowledged and provided for. The complex may even behave chaotically, amplifying the need for timely, responsive management interventions on project paths not previously well traveled. Returning from chaos to complexity requires both leadership and broadly engaging the wisdom of the team.

Emergence is when projects exhibit properties and behaviors which are attributed to the whole, not to its various tasks. Emergent behavior in projects is a result of the interactions and relationships between project elements and tasks rather than the behavior of individual elements. It emerges from a combination of the behavior and properties of the project elements and the project structure, both physical and execution process, and the potential interactions between them.

"Project complexity is the degree of interrelatedness between project attributes and interfaces, and their consequential impact on predictability and functionality."²

Complex Project Analogy


A complex project is described through the analogy that follows.

² Construction Industry Institute Research Summary 305-1, 2015

On the top sheet we draw a line along one of the horizontal graph lines with each vertical line representing the ending of one activity and the beginning of the next.	
This would represent a simple project and the project would remain simple even if we add a couple of horizontal lines with just a few vertical connecting lines.	
Now let's think about a project with many horizontal and vertical lines essentially encompassing all the boxes on that top sheet of graph paper. We would describe such a project as complicated.	
Finally, let's take that complicated project with many horizontal and vertical connections and add two new elements. The first, diagonal lines between seemingly random nodes on this top sheet representing precedence and constraint coupling.	
And second, lines penetrating down through the stack of graph paper connecting other complicated activity sets.	

Each of these other sheets of graph paper is not static. Rather they are being tugged and rotated by various externalities and stakeholders. We call this very dynamic project, complex.

To continue with this analogy: when large complex projects come off the rails, they tend to go through a chaotic phase. The stack of graph paper is thrown up in the air and stability does not return until the project manager gathers up and reorganizes that stack of graph paper.

Sources of Complexity in Engineering and Construction Projects

Complexity can arise in engineering and construction programs from a broad range of factors. These include:

- Strategic Business Objectives (SBOs)
- Organizational
- Stakeholders
- Political
- Project portfolio
- Program execution
- Technological
- Environmental

Each of these source categories is further developed in Table 1.

Table 1		
Sources of Complexity		
in		
Engineering & Construction Programs		
Strategic Business Objectives (SBOs)	Ambiguity; Visibility; Alignment	
	SBO Migration Over Time	
	Conflicting SBOs	
	Competitive Landscape Changes	
	Market Migration	
	Economic Susceptibility (Local; Global)	
	Owner Complexity (JV; Alliance; State Owned	
	Enterprise)	
	Scope/Reach of Defined Outcomes	
Organizational	Shared Understanding of Program Management	
	Inadequate	
	Clarity of Roles and Responsibilities Inadequate	
	Resistance to Change	
	Value Destroying Processes and Procedures	
	Lack of Sense of Urgency	
	Stress Level; Team Fatigue	
	Silos that Impact Communication and Knowledge	
	Sharing	
	Cultural Issues	
	Number of Locations	
	Distance of Program from Day to Day Business	
	Workshare Systems and Process Experience and	
	Effectiveness Inadequate	
	Duplication of Efforts (Owner/PMC)	
	Duplication of Efforts (PMC/Suppliers)	
	Risk Aversion vs. Risk Management	
Stakeholders	Number, Types, Importance	
	Conflicting Stakeholder Interests	
	Timing & Duration of Stakeholder Processes	
	Number & Types of Stakeholder Issues	
	Ex-Process Interventions (lawsuits; protests; labor	
	actions)	

Table 1		
Sources of Complexity		
in Engineering & Construction Programs		
	Extent of Commitments	
Political	Degree of Political Sensitivity (Project of Key Supply	
	Locations)	
	Political Stability (Number of Relevant Political Players;	
	Number of Election Cycles or Other Anticipated Changes	
	of Government)	
	Role in Power Struggles	
	Sustainability of Political Will	
	Role of Supply Chain in International Relations (Enabler	
	or Held Hostage)	
	Extent of Capacity Building and Feedback Role	
Project Portfolio	Number of Projects	
	Precedences and Interdependencies	
	Uncertainties of Assumptions and Data	
	Sophistication of Modeling and Analysis	
	Assumption Migration	
	Definition of "White Space"	
	Number of Constraints	
Program Execution	Cyclomatic Complexity	
	Structural Complexity of Program Plan, Work	
	Breakdown Structure (WBS), and Schedule	
	Degree of Shared Constraints (First; Second; Third	
	Order)	
	Degree of Constraint Coupling (Direct and Indirect)	
	Number of Changes	
	Supply Chain Resiliency; Extent of Common Failure	
	Modes (Common Sub-tier Sourcing)	
	Depth of Labor Pool (Total & Critical Skills)	
	Labor Predictability (Labor Action; Productivity)	
	Physical Complexity of Projects Comprising the Program	
	(Footprint; Degree of Temporary Construction; Duration	

Table 1		
Sources of Complexity		
in		
Engineering & Construction Programs		
	of Discrete Work Activities (Duration of Transition	
	Phases))	
	Specialized Equipment Availability and Lead Times	
	Permitting and Regulatory Complexity; Timeliness	
	Logistical Congestion and Chokepoints	
	Flexibility of Sequencing	
	Financial and Financing Constraints	
	Regulatory Constraints	
	Management Tools and Systems Not Adequately Integrated	
	Shallow Risk Management	
	Extent of Feedback Mechanisms	
	Distance of Projects and Key Supply Locations from Day	
	to Day Operations	
	to buy operations	
Technological	New Process	
3.00	New Tools	
	Technical Design Basis Not Fixed	
	Prototyping, Planning, and Analysis Inadequate	
	Specialized Materials or Skills	
	Limited Number of Suppliers	
	IT Complexity	
	Systems Integration Extent	
Environmental	Extent of Regulatory Processes	
	Number of Significant Issues	
	Effective Footprint	
	Duration of Impacts	

Measuring and Managing Project Complexity

The measurement of project complexity remains an industry challenge. Methods related to assessment of the presence and strength of the various factors associated with complexity, similar to many of those in Table 1, have been suggested. Reference 1 (see References below) suggests one method based on precedences that consider coupling, and is in some ways analogous to the cyclomatic coupling used in the programming industry. It provides the benefit of addressing the impacts from modularization as well as assessing how complexity changes as new couplings emerge and precedences are retired through performance of work.

Management of project complexity is greatly aided by objective, tracking metrics. Other actions to manage complexity include:

- Reduce ambiguity (continuously).
- Minimize coupling (correlation).
- Increase transparency of information.
- Engagement and alignment of stakeholders.
- Reliance on capabilities and capacities when processes fall short (contingent execution).
- Timely, decisive action.

Conclusion

Complexity is a distinguishing hallmark of many engineering and construction programs. Efforts to better manage complexity must begin with a clear understanding of what it is, what are its potential sources, and improved focus on measuring and managing it.

References

"Complexity in Large Engineering & Construction Programs," Bob Prieto; *PM World Journal*, Vol. VI, Issue XI, November 2017.

Construction Industry Institute Research Summary 305-1, 2015.

Coupling in Large Complex Projects, National Academy of Construction Executive Insight

For Additional Reading

The following NAC Executive Insights are recommended for additional reading and represent part of Introduction to Large Complex Projects:

- 13.0 Introduction to Complex Projects
- 13.1 Coupling In Large Complex Projects

- 13.15 Location Factors in Large Complex Projects
- 14.4 Human Factors in Large Complex Projects
- 14.8 Considerations in Cross-Cultural Negotiations
- 14.11 Cross Cultural Factors

About the Author

Bob Prieto was elected to the National Academy of Construction in 2011. He is a senior executive who is effective in shaping and executing business strategy and a recognized leader within the infrastructure, engineering, and construction industries.

Although the author and NAC have made every effort to ensure accuracy and completeness of the advice or information presented within, NAC and the author assume no responsibility for any errors, inaccuracies, omissions or inconsistencies it may contain, or for any results obtained from the use of this information. The information is provided on an "as is" basis with no guarantees of completeness, accuracy, usefulness or timeliness, and without any warranties of any kind whatsoever, express or implied. Reliance on any information provided by NAC or the author is solely at your own risk.